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A non-iterative method for boundary-layer equations—Part II:
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SUMMARY

A non-iterative method for non-linear parabolic partial-di�erential equations is described and applied
to boundary-layer equations for two-dimensional laminar and turbulent �ows. Comparison of calculated
results indicates that the accuracy of this method is comparable to those obtained with an iterative
method. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the boundary-layer equations for laminar and turbulent �ows are
parabolic and non-linear. Their solutions can be obtained in their non-linear form by using a
shooting method or in linearized form by a �nite-di�erence method [1]. The latter choice is
more common and practical, especially in turbulent �ows since a �nite-di�erence method is
more e�cient than an integration method such as a shooting method.
It is also well known that the solutions of the boundary-layer equations in di�erential

form are more time consuming than those based on integral form since in the latter case the
solutions are obtained for ordinary di�erential equations. Even though signi�cant advances
have been made in the development of e�cient and accurate numerical methods to solve the
di�erential form of the boundary-layer equations, the computer times associated with them
are still considerably more than those of integral methods.
The ‘edge’ the integral methods have over the di�erential methods becomes even more sig-

ni�cant in methods which employ inviscid=viscous interaction techniques where the boundary-
layer equations are solved several times for a given pressure distribution by making several
sweeps on the body. In each sweep, the solutions at each streamwise location are obtained
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iteratively since the equations have been linearized. This procedure is not only applied on ev-
ery streamwise station but it is also used in each sweep. It is clear that signi�cant savings in
computer time can result if the solutions are not iterated at each streamwise location without
sacri�cing accuracy.
In the present paper, we address this need and describe a new numerical method that will

allow computer savings of 75% of a modern �nite-di�erence method such as that described
in Reference [2]. The method is based on a non-iterative scheme [3] and its accuracy is
comparable to that resulting from an iterative scheme. In this paper, we describe this method
for two-dimensional laminar and turbulent �ows and compare its solutions with an iterative
scheme such as that described in Reference [2].
To the authors’ knowledge, this is the �rst paper that describes the solution of the boundary-

layer equations, which are non-linear parabolic partial-di�erential equations, with a noniterative
scheme. As such, it is a useful and e�cient tool leading to considerable computer savings
and will �nd applications in many engineering problems that require the solution of nonlinear
parabolic partial di�erential equations.

2. BOUNDARY-LAYER EQUATIONS

The boundary-layer equations and their boundary conditions for two-dimensional laminar and
turbulent �ows are well known. With an eddy viscosity (�m) concept,

�m=
(−u′v′)
@u=@y

(1)

they can be written as

@u
@x
+

@v
@y
= 0 (2)
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@y
= ue

due

dx
+

@
@y

(
b
@u
@y

)
(3)

y = 0; u=0; v=0; y→∞; u→ue(x) (4)

where

b= �m + v

As discussed in Reference [2], it is more e�cient to solve the boundary-layer equations
in transformed variables. A convenient one is the Falkner–Skan transformation in which a
similarity parameter � is de�ned by

�=
√

ue

�x
y (5a)

and a dimensionless stream function f(x; �) by

f(x; �)=
 (x; y)√

ue�x
(5b)
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Here  (x; y) is a dimensional stream function that satis�es equation (2),

u=
@ 
@y

; v= − @ 
@x

(6)

With this transformation, Equations (2) to (4) can be written as

(bf′′)′ +
m+ 1
2

ff′′ +m[1− (f′)2]= x
(
f′ @f

′

@x
− f′′ @f

@x

)
(7)

�=0; f=f′=0; �= �e; f′=1 (8)

Here m is a dimensionless pressure-gradient parameter

m=
x
ue

due

dx
(9)

3. ITERATIVE METHOD

Boundary-layer equations being parabolic in nature can be solved by using several numerical
methods; of these, �nite di�erence methods are at present the most common with Crank–
Nicolson [2] and Keller’s box [4] methods being the most popular ones. The latter has several
advantages over the former and is considered here.
According to Keller’s method, Equation (7) is �rst expressed as a �rst-order system by

introducing new variables u(x; �), and v(x; �)

f′= u (10a)

u′= v (10b)

so that Equation (7) becomes

(bv)′ +
m+ 1
2

fv+m(1− u2)= x
(
u
@u
@x

− v
@f
@x

)
(10c)

The boundary conditions now become

�=0; u=0; f=0; �= �e; u=1 (11)

3.1. Iterative method

To solve the system given by Equations (10) and (11) with Keller’s box method, which is
an iterative method, we consider the net rectangle shown in Figure 1

x0 = 0; xn= xn−1 + kn; n=1; 2; : : : ; N

�0 = 0; �j= �j−1 + hj; j=1; 2; : : : ; J ; �J = �e

(12)
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Figure 1. Net rectangle for distance approximations.

and write di�erence equations that are to approximate Equations (10). We write the �nite
di�erence approximations of Equations 10(a) and 10(b) at (xn; �j−1=2) using centred-di�erence
derivatives.

fn
j − fn

j−1
hj

− un
j + un

j−1
2

=0 (13a)

un
j − un

j−1
hj

− vnj + vnj−1
2

=0 (13b)

Similarly, Equation (10c) is approximated at the midpoint (xn−1=2; �j−1=2) of the net rectangle
P1P2P3P4,

1
2

[
(bv)nj − (bv)nj−1

hj
+
(bv)n−1j − (bv)n−1j−1

hj

]
+

mn−1=2 + 1
4

[
(fv)nj−1=2 + (fv)n−1j−1=2

]

+mn−1=2
(
1− ((u2)nj−1=2 + (u

2)n−1j−1=2)

2

)

= xn−1=2
[
un−1=2
j−1=2

un
j−1=2 − un−1

j−1=2
kn

− vn−1=2j−1=2
fn
j−1=2 − fn−1

j−1=2
kn

]
(13c)

The boundary conditions, Equation (11) become

un
0 = 0; fn

0 = 0; un
J =1 (14)

If we assume fn−1
j ; un−1

j ; vn−1j to be known for 06j6J , then Equations (13) and (14) form
a system of 3J + 3 equations for the solution of 3J + 3 unknowns fn

j ; un
j ; v

n
j , 06j6J . To

solve this non-linear system, we use Newton’s method and solve the resulting linear system
with the block-elimination method described in detail in Reference [2].
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3.2. Noniterative method

To solve the system given by Equations (10) and (11) with the non-iterative method, we �rst
write Equation (10c) at (xn−1=2; �) as

((bv)′)n + ((bv)′)n−1

2
+

mn−1=2 + 1
4
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we can write

(fv)n−1=2 =
(fnvn−1 + fn−1vn)

2
+ o(k2n) (16c)

Similarly, we can represent the other terms in Equation (15) with second order approximations,

(ux)n−1j−1=2 = a1un−3
j−1=2 + a2un−2

j−1=2 + a3un−1
j−1=2

(ux)nj−1=2 = ã1un−2
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(17)

where

a1 =
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(xn−2 − xn−3)(xn−1 − xn−3)
; a2 = − xn−1 − xn−3
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(18)

Equation (15) can then be written as
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Table I. Comparison of calculated results for k =1=16.

�x=1=16 Iterative method Non-iterative method (F ′′
w )iter − (f′′

w )non Relative

x (f′′
w )iter Iter (f′′

w )non Iter Di�. Di�.

0.25 2:80E− 01 3 2:80E− 01 1 1:00E− 04 3:57E− 04
0.3125 2:66E− 01 3 2:66E− 01 1 0:00E + 00 0:00E + 00
0.375 2:50E− 01 3 2:50E− 01 1 1:00E− 04 3:99E− 04
0.4375 2:34E− 01 3 2:34E− 01 1 0:00E + 00 0:00E + 00
0.5 2:18E− 01 3 2:18E− 01 1 1:00E− 04 4:60E− 04
0.5625 2:00E− 01 3 2:00E− 01 1 0:00E + 00 0:00E + 00
0.625 1:81E− 01 3 1:80E− 01 1 2:00E− 04 1:11E− 03
0.6875 1:60E− 01 3 1:60E− 01 1 2:00E− 04 1:25E− 03
0.75 1:37E− 01 3 1:37E− 01 1 3:00E− 04 2:19E− 03
0.8125 1:11E− 01 3 1:11E− 01 1 5:00E− 04 4:50E− 03
0.875 8:02E− 02 3 7:95E− 02 1 7:10E− 04 8:85E− 03
0.9375 3:95E− 02 4 3:88E− 02 1 6:30E− 04 1:60E− 02
0.9425 3:42E− 02 3 3:25E− 02 1 1:68E− 03 4:92E− 02
0.9475 2:83E− 02 3 2:66E− 02 1 1:75E− 03 6:18E− 02
0.9525 2:18E− 02 3 1:93E− 02 1 2:48E− 03 1:14E− 01
0.9575 1:32E− 02 3 9:44E− 03 1 3:74E− 03 2:84E− 01

Total iteration 49 16

If we assume fn
j , u

n
j , v

n
j to be unknowns for 06j6J , then Equations (13a), (13b) and (19)

form a linear algebraic system of 3J+3 equations that can be solved with the same procedure
used for the iterative method [2].

4. ACCURACY OF THE NONITERATIVE METHOD

To evaluate the accuracy of the noniterative method, we have performed calculations with
both methods for laminar and turbulent �ows as discussed below.

4.1. Laminar �ow

We consider Howarth’s �ow for which the inviscid velocity distribution is given by

ue(x)=1− 1
8
x

and perform calculations with �xed uniform spacing in the x-direction with k=1=16 and 1=32.
This �ow has a separation at x=0:960 which is generally obtained by extrapolation. For

calculations to proceed as close to this location, much �ner spacings are needed around x ≈
0:95. So we expect the calculations to break down with course spacing earlier than those with
�ne spacing.
Tables I and II show the calculated wall-shear parameter for k=1=16 and 1=32, respectively.

A choice of k=1=16 yields 16 x-stations, the last being at x=0:9375. This is a rather severe
test case because, since the iterative method uses Newton’s method, a course grid will increase
the number of iterations.
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Table II. Comparison of calculated results for k =1=16.

�x=1=32 Iterative method Noniterative method (f′′
w )iter − (f′′

w )non Relative

x (f′′
w )iter Iter (f′′

w )non Iter Di�. Di�.

0.125 3:07E− 01 2 3:07E− 01 1 0:00E + 00 0:00E + 00
0.1563 3:01E− 01 2 3:01E− 01 1 0:00E + 00 0:00E + 00
0.1875 2:94E− 01 2 2:94E− 01 1 0:00E + 00 0:00E + 00
0.2188 2:87E− 01 2 2:87E− 01 1 0:00E + 00 0:00E + 00
0.25 2:80E− 01 2 2:80E− 01 1 −1:00E− 04 −3:57E− 04
0.2813 2:73E− 01 2 2:73E− 01 1 −1:00E− 04 −3:67E− 04
0.3125 2:66E− 01 2 2:66E− 01 1 0:00E + 00 0:00E + 00
0.3438 2:58E− 01 2 2:58E− 01 1 0:00E + 00 0:00E + 00
0.375 2:50E− 01 2 2:50E− 01 1 0:00E + 00 0:00E + 00
0.4063 2:43E− 01 2 2:43E− 01 1 0:00E + 00 0:00E + 00
0.4375 2:35E− 01 2 2:35E− 01 1 0:00E + 00 0:00E + 00
0.4688 2:26E− 01 2 2:26E− 01 1 0:00E + 00 0:00E + 00
0.5 2:18E− 01 3 2:18E− 01 1 1:00E− 04 4:60E− 04
0.5313 2:09E− 01 3 2:09E− 01 1 0:00E + 00 0:00E + 00
0.5625 2:00E− 01 3 2:00E− 01 1 1:00E− 04 5:01E− 04
0.5938 1:90E− 01 3 1:90E− 01 1 0:00E + 00 0:00E + 00
0.625 1:81E− 01 3 1:81E− 01 1 1:00E− 04 5:54E− 04
0.6563 1:70E− 01 3 1:70E− 01 1 1:00E− 04 5:87E− 04
0.6875 1:60E− 01 3 1:60E− 01 1 1:00E− 04 6:26E− 04
0.7188 1:49E− 01 3 1:49E− 01 1 2:00E− 04 1:35E− 03
0.75 1:37E− 01 3 1:37E− 01 1 2:00E− 04 1:46E− 03
0.7813 1:24E− 01 3 1:24E− 01 1 2:00E− 04 1:61E− 03
0.8125 1:11E− 01 3 1:11E− 01 1 3:00E− 04 2:70E− 03
0.8438 9:65E− 02 3 9:61E− 02 1 3:50E− 04 3:63E− 03
0.875 8:02E− 02 3 7:98E− 02 1 4:90E− 04 6:11E− 03
0.9063 6:12E− 02 3 6:05E− 02 1 6:90E− 04 1:13E− 02
0.9375 3:83E− 02 4 3:73E− 02 1 1:00E− 03 2:61E− 02
0.9425 3:31E− 02 3 3:14E− 02 1 1:67E− 03 5:05E− 02
0.9475 2:71E− 02 3 2:52E− 02 1 1:91E− 03 7:05E− 02
0.9525 2:04E− 02 3 1:79E− 02 1 2:58E− 03 1:26E− 01
0.9575 1:12E− 02 4 6:88E− 03 1 4:30E− 03 3:84E− 01

Total 83 31

Table I shows the results for k=1=16. Since the non-iterative method requires that solutions
to previous three x-stations are known, the comparison of the calculated results in Table I
begin at the fourth x-station, x=0:25. Also, this table contains additional x-stations between
x=0:9375 and 0.96 with �x=0:005, due to �ow separation.
As can be seen, the solutions obtained from the noniterative method agree well with those

obtained from the iterative method, especially for values of x away from the separation lo-
cation. As we approach the separation location, say x ≈ 0:90, the di�erence between the two
solutions increases gradually. Within a plotting accuracy shown in Figure 2, the agreement is
very good, including the location of �ow separation point. In addition, the comparison shows
that while the iterative method requires a total of 49 iterations, the noniterative method re-
quires only 16 iterations, leading to computational work reduction by 70%. The convergence
criteria on the change of f′′

wall is 10
−4.
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Figure 2. Comparison of calculated wall shear values with both methods for k =1=16.
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Figure 3. Comparison of calculated wall shear values with both methods for k =1=32.

Table II and Figure 3 show the results for k=1=32 with conclusions essentially the same
as those obtained with k=1=16. Again, both results agree very well until x ≈ 0:90 and begin
to di�er with increasing x. The computational work reduction of the non-iterative method (83
iterations vs 31 iterations) is again good, but this time it is around 60%.

4.2. Turbulent �ow

To compare the predictions of the non-iterative method with the iterative method, we have
considered a turbulent �ow with zero pressure gradient with eddy viscosity formulation given
by the Cebeci–Smith model [4]. This formulation treats a turbulent boundary layer as a
composite layer with inner and outer regions and uses separate eddy-viscosity formulas in
each region, expressing b in Equation (7) as a function of f′′ and f. As a result, there
are several choices for writing �nite-di�erence approximations to (bf′′)′ in the non-iterative
method. Here we assume that b is given with values at xn−1, thus making this term known
prior to performing calculations at x= xn. Other choices are being investigated and will be
reported later.
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Table III. Comparison of calculated results for turbulent �ow on a �at plate.

Iterative method Noniterative method (f′′
w )iter − (f′′

w )non Relative

x (f′′
w )iter Iter (f′′

w )non Iter Di�. Di�.

0.4 1.27E+00 5 1.33E+00 1 −5:50E− 02 −4:32E− 02
0.5 1.38E+00 2 1.39E+00 1 −9:00E− 03 −6:54E− 03
0.6 1.43E+00 3 1.46E+00 1 −2:10E− 02 −1:46E− 02
0.7 1.51E+00 2 1.52E+00 1 −2:00E− 03 −1:32E− 03
0.8 1.56E+00 2 1.58E+00 1 −1:50E− 02 −9:62E− 03
0.9 1.63E+00 2 1.63E+00 1 −2:00E− 03 −1:23E− 03
1 1.68E+00 2 1.69E+00 1 −1:30E− 02 −7:75E− 03
2 2.04E+00 2 2.08E+00 1 −3:40E− 02 −1:67E− 02
3 2.40E+00 6 2.43E+00 1 −2:80E− 02 −1:17E− 02
4 2.65E+00 2 2.67E+00 1 −1:60E− 02 −6:03E− 03
5 2.88E+00 2 2.93E+00 1 −5:30E− 02 −1:84E− 02
6 3.12E+00 3 3.10E+00 1 2:00E− 02 6:42E− 03
7 3.29E+00 2 3.29E+00 1 3:00E− 03 9:11E− 04
8 3.45E+00 2 3.44E+00 1 7:00E− 03 2:03E− 03
9 3.61E+00 2 3.60E+00 1 1:40E− 02 3:88E− 03
10 3.75E+00 2 3.76E+00 1 −1:30E− 02 −3:47E− 03

Total iterations 41 16
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Figure 4. Comparison of calculated wall shear values for turbulent �ow on a �at plate.

Table III and Figure 4 show the results for a turbulent �ow on a �at plate with unit
Reynolds number corresponding to 106. The calculations with the iterative method started
as laminar at x=0 and transition location was speci�ed at x=0:2 and were continued with
k=0:1 in [0, 1] and k=1 in [1; 10]. The calculations with the non-iterative method started at
the fourth x-station, x=0:40. As can be seen, the predictions of the noniterative method are
in very good agreement with those obtained with the iterative method. The e�ciency of the
noniterative method is similar to the e�ciency in laminar �ows: whereas the iterative method
requires 41 iterations, the noniterative method requires only 16.
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Table IV. Comparison of calculated results for turbulent �ow on a �at plate.

Iterative method Noniterative method (f′′
w )iter − (f′′

w )non Relative

x (f′′
w )iter Iter (f′′

w )non Iter Di�. Di�.

0.4 1.24E+00 1 1.24E+00 1 4:00E− 03 3:22E− 03
0.5 1.32E+00 2 1.33E+00 1 −7:00E− 03 −5:29E− 03
0.6 1.40E+00 2 1.40E+00 1 −1:00E− 03 −7:15E− 04
0.7 1.47E+00 2 1.48E+00 1 −2:00E− 03 −1:36E− 03
0.8 1.53E+00 2 1.55E+00 1 −1:30E− 02 −8:47E− 03
0.9 1.60E+00 1 1.60E+00 1 0:00E + 00 0:00E + 00
1 1.66E+00 2 1.66E+00 1 2:00E− 03 −1:20E− 03
2.5 2.17E+00 2 2.17E+00 1 −2:00E− 03 −9:21E− 04
5 2.90E+00 1 2.87E+00 1 2:20E− 02 7:60E− 03
7.5 3.33E+00 2 3.34E+00 1 −1:30E− 02 −3:91E− 03
10 3.70E+00 2 3.83E+00 1 −1:29E− 01 −3:48E− 02

Total iterations 19 11
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Figure 5. Comparison of calculated wall shear values for turbulent �ow on a �at plate.

Table IV and Figure 5 present the results similar to those in Table III and Figure 4 except
k in [1; 10] is 2.5. As can be seen, the predictions of the noniterative method di�er from those
predicted with the iterative method. The reason for this is clearly the way b is calculated.
Other choices for handling the b-term are in progress and will be reported later.
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