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A non-iterative method for boundary-layer equations—Part II:
Two-dimensional laminar and turbulent flows
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SUMMARY

A non-iterative method for non-linear parabolic partial-differential equations is described and applied
to boundary-layer equations for two-dimensional laminar and turbulent flows. Comparison of calculated
results indicates that the accuracy of this method is comparable to those obtained with an iterative
method. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the boundary-layer equations for laminar and turbulent flows are
parabolic and non-linear. Their solutions can be obtained in their non-linear form by using a
shooting method or in linearized form by a finite-difference method [1]. The latter choice is
more common and practical, especially in turbulent flows since a finite-difference method is
more efficient than an integration method such as a shooting method.

It is also well known that the solutions of the boundary-layer equations in differential
form are more time consuming than those based on integral form since in the latter case the
solutions are obtained for ordinary differential equations. Even though significant advances
have been made in the development of efficient and accurate numerical methods to solve the
differential form of the boundary-layer equations, the computer times associated with them
are still considerably more than those of integral methods.

The ‘edge’ the integral methods have over the differential methods becomes even more sig-
nificant in methods which employ inviscid/viscous interaction techniques where the boundary-
layer equations are solved several times for a given pressure distribution by making several
sweeps on the body. In each sweep, the solutions at each streamwise location are obtained

*Correspondence to: T. Cebeci, The Boeing Company, 2401 E. Wardlow Road, MC C054-0044, Long Beach,
CA 90807-5309, U.S.A.

TE-mail: tuncer.cebeci@boeing.com

*E-mail: jian.p.shao@boeing.com

Received 20 April 2002
Copyright © 2003 John Wiley & Sons, Ltd. Revised 17 February 2003



1140 T. CEBECI AND J. P. SHAO

iteratively since the equations have been linearized. This procedure is not only applied on ev-
ery streamwise station but it is also used in each sweep. It is clear that significant savings in
computer time can result if the solutions are not iterated at each streamwise location without
sacrificing accuracy.

In the present paper, we address this need and describe a new numerical method that will
allow computer savings of 75% of a modern finite-difference method such as that described
in Reference [2]. The method is based on a non-iterative scheme [3] and its accuracy is
comparable to that resulting from an iterative scheme. In this paper, we describe this method
for two-dimensional laminar and turbulent flows and compare its solutions with an iterative
scheme such as that described in Reference [2].

To the authors’ knowledge, this is the first paper that describes the solution of the boundary-
layer equations, which are non-linear parabolic partial-differential equations, with a noniterative
scheme. As such, it is a useful and efficient tool leading to considerable computer savings
and will find applications in many engineering problems that require the solution of nonlinear
parabolic partial differential equations.

2. BOUNDARY-LAYER EQUATIONS

The boundary-layer equations and their boundary conditions for two-dimensional laminar and
turbulent flows are well known. With an eddy viscosity (¢,) concept,

_ ()

Em = W (1)
they can be written as
ou 0v
a + @ =0 2)
ou ou du, 0 ou
uax-f'l)ay—uedx‘f'ay(bay> (3)
y=0, u=0, v=0; y—oo,u—u.x) 4)
where
b=¢,+v

As discussed in Reference [2], it is more efficient to solve the boundary-layer equations
in transformed variables. A convenient one is the Falkner—Skan transformation in which a
similarity parameter # is defined by

Ue

n=\/--v (5a)

and a dimensionless stream function f(x,7n) by

Y(x, y)
VUteVX
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Here Y(x, y) is a dimensional stream function that satisfies equation (2),

_W
u—@, U——a (6)

With this transformation, Equations (2) to (4) can be written as

11\/ m+1 1 _ N2 /%_ //al
by + 2 et = (P = (£ - ™)
n=0, f=[f"=0; n=n. [f'=1 (8)
Here m is a dimensionless pressure-gradient parameter
x du,
m—u—e & 9)

3. ITERATIVE METHOD

Boundary-layer equations being parabolic in nature can be solved by using several numerical
methods; of these, finite difference methods are at present the most common with Crank—
Nicolson [2] and Keller’s box [4] methods being the most popular ones. The latter has several
advantages over the former and is considered here.

According to Keller’s method, Equation (7) is first expressed as a first-order system by
introducing new variables u(x,#), and v(x,n)

/' =u (10a)
u'=v (10b)
so that Equation (7) becomes
(bv)’+mT+1fv+m(l—u2):x (u?i—vg) (10c)
The boundary conditions now become
n=0, u=0, f=0; n=n,, u=1 (11)

3.1. Iterative method

To solve the system given by Equations (10) and (11) with Keller’s box method, which is
an iterative method, we consider the net rectangle shown in Figure 1

=0, xX"=x"'+k, n=12,...,N
) (12)
No=0, ni=nj—1+h, j=12,....0; n;=n.
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Figure 1. Net rectangle for distance approximations.

and write difference equations that are to approximate Equations (10). We write the finite
difference approximations of Equations 10(a) and 10(b) at (x",#,_1/2) using centred-difference
derivatives.

3 =0 (13a)
iR S
W 5 =0 (13b)

Similarly, Equation (10c) is approximated at the midpoint (x"~"2,#,_1,2) of the net rectangle
PP,P;Py,

1
2

boYy! — (B! o)~ — (bv)iZ] n1p2
(bv);] hj( D),_l +( U)_; hj( v)]—l‘| " m ; + 1 [(fv);’_,/z‘i‘(fv);l:llﬁ

12 (1 @) (”2);11/2)>
2

n n—1 n n—1
u; —u; /i - f
a1 |12 B 12 a—12 Jj=12 —12
=X Y |f”{j—l/2 ! k, ’ - j—l//2 ’ k, s ] (130)
The boundary conditions, Equation (11) become
uy=0; f5=0; uj=1 (14)

If we assume j_‘l."*l,u;’*l,lglﬂfl to be known for 0<j<J, then Equations (13) and (14) form
a system of 3J + 3 equations for the solution of 3J + 3 unknowns f",u/,v’, 0<j<J. To
solve this non-linear system, we use Newton’s method and solve the resulting linear system

with the block-elimination method described in detail in Reference [2].
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3.2. Noniterative method

To solve the system given by Equations (10) and (11) with the non-iterative method, we first
write Equation (10c¢) at (x"~'/2,#%) as

((bv)’)” +((bv)’)"*1 m”*1/2 +1

: + ] (" 4 ) (L —
:xn;l/2 (u” 8@3’:1 +u! %L;n - ﬁjg)’;l — ! aa{:) (15)
Since
fn:fn—1/2+5f;7;1/2]‘2” +%az%x;l/2 <k2”>2+o(k,3) (16a)
and
fwlzszuz5f;xuzf;_+_;'62£;¢1ﬂ(€;>2.+(Kk3) (16b)
we can write
(foy-12 = L ;f"q“") +o(k2) (16¢)

Similarly, we can represent the other terms in Equation (15) with second order approximations,

n—1 __ n—3 n—2 n—1
(ux)j =1y = @ ~5), + a7, +asu’”

(17)
(ux)i_1p= alujf':lz/z + azuj'.’:ll/z +au )
where
_ Xpn—1 — Xp—2 _ Xp—1 — Xp—3
a) = , = —
(xn—2 - xn—3)(xn—1 - xn—3) (xn—2 - xn—3)(xn—l - xn—2)
2xn—1 — Xp—2 — Xp—3 ~ Xn — Xp—1
asz = 5 ay = 18
(xnfl — Xp—2 )(Xn,1 - xn73) (Xn,1 — Xp—2 )(-xn - xn72) ( )
dz — _ Xp — Xp—2 d} _ 2xn —Xp—1 — Xp—2
(Xn—1 — Xn—2)(Xy — Xu—1)’ (0 — Xn—1)(Xn — Xn—2)
Equation (15) can then be written as
(boyr — (oY, (boy; ™ = (b0)) = w41 - »
T + h T (i 550+ 000 i50)
j j
n n—3 n—2 n—1
W@y + U, +asuy )
+u?”11 (G2, + au'~, + aul )
_ _ —12 —1)2 12 b—1)2
+2m"(1 —u, M;’,ll/z)zxn 172 / / / (19)

-3 -2 -1
—Vipla fl0, tar 5, +asfiDy )

_ ~ ) ~ _ ~
*U;—ll/z(alf;n_uz + a2fjn—1}2 +asfilin)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1139-1148



1144 T. CEBECI AND J. P. SHAO

Table 1. Comparison of calculated results for £ =1/16.

Ax=1/16 Iterative method Non-iterative method (K iter = (/& Jnon Relative
X (faiter Iter (4 Inon Iter DifT. Diff.
0.25 2.80E — 01 3 2.80E — 01 1 1.00E — 04 3.57E — 04
0.3125 2.66E — 01 3 2.66E — 01 1 0.00E + 00 0.00E + 00
0.375 2.50E — 01 3 2.50E — 01 1 1.00E — 04 3.99E — 04
0.4375 2.34E — 01 3 2.34E — 01 1 0.00E + 00 0.00E + 00
0.5 2.18E — 01 3 2.18E — 01 1 1.00E — 04 4.60E — 04
0.5625 2.00E — 01 3 2.00E — 01 1 0.00E + 00 0.00E + 00
0.625 1.81E — 01 3 1.80E — 01 1 2.00E — 04 1.11E — 03
0.6875 1.60E — 01 3 1.60E — 01 1 2.00E — 04 1.25E — 03
0.75 1.37E — 01 3 1.37E — 01 1 3.00E — 04 2.19E — 03
0.8125 1.11E — 01 3 1.11E — 01 1 5.00E — 04 4.50E — 03
0.875 8.02E — 02 3 7.95E — 02 1 7.10E — 04 8.85E — 03
0.9375 3.95E — 02 4 3.88E — 02 1 6.30E — 04 1.60E — 02
0.9425 342E — 02 3 3.25E — 02 1 1.68E — 03 4.92E — 02
0.9475 2.83E — 02 3 2.66E — 02 1 1.75E — 03 6.18E — 02
0.9525 2.18E — 02 3 1.93E — 02 1 248E — 03 1.14E — 01
0.9575 1.32E — 02 3 9.44E — 03 1 3.74E — 03 2.84E — 01
Total iteration 49 16

If we assume f, uf, v to be unknowns for 0<;<J, then Equations (13a), (13b) and (19)
form a linear algebraic system of 3J 43 equations that can be solved with the same procedure

used for the iterative method [2].

4. ACCURACY OF THE NONITERATIVE METHOD

To evaluate the accuracy of the noniterative method, we have performed calculations with
both methods for laminar and turbulent flows as discussed below.

4.1. Laminar flow

We consider Howarth’s flow for which the inviscid velocity distribution is given by

u(x)=1- %x
and perform calculations with fixed uniform spacing in the x-direction with £ =1/16 and 1/32.

This flow has a separation at x=0.960 which is generally obtained by extrapolation. For
calculations to proceed as close to this location, much finer spacings are needed around x ~
0.95. So we expect the calculations to break down with course spacing earlier than those with
fine spacing.

Tables I and II show the calculated wall-shear parameter for k =1/16 and 1/32, respectively.
A choice of £=1/16 yields 16 x-stations, the last being at x =0.9375. This is a rather severe
test case because, since the iterative method uses Newton’s method, a course grid will increase
the number of iterations.
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Table II. Comparison of calculated results for k£ =1/16.

Ax=1/32 Iterative method Noniterative method (fiter = (& Inon Relative
X S Yiter Iter (o Jnon Iter Diff. Diff.
0.125 3.07E — 01 2 3.07E — 01 1 0.00E + 00 0.00E + 00
0.1563 3.01E — 01 2 3.01E — 01 1 0.00E + 00 0.00E + 00
0.1875 2.94E — 01 2 2.94E — 01 1 0.00E + 00 0.00E + 00
0.2188 2.87E — 01 2 2.87E — 01 1 0.00E + 00 0.00E + 00
0.25 2.80E — 01 2 2.80E — 01 1 —1.00E — 04 —3.57E — 04
0.2813 2.73E — 01 2 2.73E — 01 1 —1.00E — 04 —3.67E — 04
0.3125 2.66E — 01 2 2.66E — 01 1 0.00E + 00 0.00E + 00
0.3438 2.58E — 01 2 2.58E — 01 1 0.00E + 00 0.00E + 00
0.375 2.50E — 01 2 2.50E — 01 1 0.00E + 00 0.00E + 00
0.4063 243E — 01 2 243E — 01 1 0.00E + 00 0.00E + 00
0.4375 2.35E — 01 2 2.35E — 01 1 0.00E + 00 0.00E + 00
0.4688 2.26E — 01 2 2.26E — 01 1 0.00E + 00 0.00E + 00
0.5 2.18E — 01 3 2.18E — 01 1 1.00E — 04 4.60E — 04
0.5313 2.09E — 01 3 2.09E — 01 1 0.00E + 00 0.00E + 00
0.5625 2.00E — 01 3 2.00E — 01 1 1.00E — 04 5.01E — 04
0.5938 1.90E — 01 3 1.90E — 01 1 0.00E + 00 0.00E + 00
0.625 1.81E — 01 3 1.81E — 01 1 1.00E — 04 5.54E — 04
0.6563 1.70E — 01 3 1.70E — 01 1 1.00E — 04 5.87E — 04
0.6875 1.60E — 01 3 1.60E — 01 1 1.00E — 04 6.26E — 04
0.7188 1.49E — 01 3 1.49E — 01 1 2.00E — 04 1.35E — 03
0.75 1.37E — 01 3 1.37E — 01 1 2.00E — 04 1.46E — 03
0.7813 1.24E — 01 3 1.24E — 01 1 2.00E — 04 1.61E — 03
0.8125 1.11E — 01 3 1.11E — 01 1 3.00E — 04 2.70E — 03
0.8438 9.65E — 02 3 9.61E — 02 1 3.50E — 04 3.63E — 03
0.875 8.02E — 02 3 7.98E — 02 1 490E — 04 6.11E — 03
0.9063 6.12E — 02 3 6.05E — 02 1 6.90E — 04 1.13E — 02
0.9375 3.83E — 02 4 3.73E — 02 1 1.00E — 03 2.61E — 02
0.9425 331E - 02 3 3.14E — 02 1 1.67E — 03 5.05E — 02
0.9475 2.71E — 02 3 2.52E — 02 1 191E — 03 7.05E — 02
0.9525 2.04E — 02 3 1.79E — 02 1 2.58E — 03 1.26E — 01
0.9575 1.12E — 02 4 6.88E — 03 1 4.30E — 03 3.84E — 01
Total 83 31

Table I shows the results for £ =1/16. Since the non-iterative method requires that solutions
to previous three x-stations are known, the comparison of the calculated results in Table I
begin at the fourth x-station, x =0.25. Also, this table contains additional x-stations between
x=0.9375 and 0.96 with Ax=0.005, due to flow separation.

As can be seen, the solutions obtained from the noniterative method agree well with those
obtained from the iterative method, especially for values of x away from the separation lo-
cation. As we approach the separation location, say x ~ 0.90, the difference between the two
solutions increases gradually. Within a plotting accuracy shown in Figure 2, the agreement is
very good, including the location of flow separation point. In addition, the comparison shows
that while the iterative method requires a total of 49 iterations, the noniterative method re-
quires only 16 iterations, leading to computational work reduction by 70%. The convergence
criteria on the change of /7, is 1074

wal
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Figure 2. Comparison of calculated wall shear values with both methods for £ =1/16.
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Figure 3. Comparison of calculated wall shear values with both methods for £ =1/32.

Table II and Figure 3 show the results for £ =1/32 with conclusions essentially the same
as those obtained with £k =1/16. Again, both results agree very well until x =~ 0.90 and begin
to differ with increasing x. The computational work reduction of the non-iterative method (83
iterations vs 31 iterations) is again good, but this time it is around 60%.

4.2. Turbulent flow

To compare the predictions of the non-iterative method with the iterative method, we have
considered a turbulent flow with zero pressure gradient with eddy viscosity formulation given
by the Cebeci—Smith model [4]. This formulation treats a turbulent boundary layer as a
composite layer with inner and outer regions and uses separate eddy-viscosity formulas in
each region, expressing b in Equation (7) as a function of f” and f. As a result, there
are several choices for writing finite-difference approximations to (bf”) in the non-iterative
method. Here we assume that b is given with values at x,_;, thus making this term known
prior to performing calculations at x =x,. Other choices are being investigated and will be
reported later.
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Table III. Comparison of calculated results for turbulent flow on a flat plate.

Iterative method Noniterative method (f)iter = (S Inon Relative
x (/& iter Iter (¥ Jnon Tter Diff. Diff.
0.4 1.27E+00 5 1.33E+00 1 —5.50E — 02 —432E — 02
0.5 1.38E+00 2 1.39E+00 1 —9.00E — 03 —6.54E — 03
0.6 1.43E+00 3 1.46E+00 1 —2.10E — 02 —1.46E — 02
0.7 1.51E+00 2 1.52E+00 1 —2.00E — 03 —1.32E — 03
0.8 1.56E+00 2 1.58E+00 1 —1.50E — 02 —9.62E — 03
0.9 1.63E+00 2 1.63E+00 1 —2.00E — 03 —1.23E - 03
1 1.68E+00 2 1.69E+00 1 —1.30E — 02 —7.75E — 03
2 2.04E+00 2 2.08E+00 1 —3.40E — 02 —1.67E — 02
3 2.40E+00 6 2.43E+00 1 —2.80E — 02 —1.17E — 02
4 2.65E+00 2 2.67E+00 1 —1.60E — 02 —6.03E — 03
5 2.88E+00 2 2.93E+00 1 —5.30E — 02 —1.84E — 02
6 3.12E4-00 3 3.10E+00 1 2.00E — 02 6.42E — 03
7 3.29E+4-00 2 3.29E+4-00 1 3.00E — 03 9.11E — 04
8 3.45E+00 2 3.44E+00 1 7.00E — 03 2.03E — 03
9 3.61E400 2 3.60E+00 1 1.40E — 02 3.88E — 03
10 3.75E+00 2 3.76E+00 1 —1.30E — 02 —347E - 03
Total iterations 41 16
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Figure 4. Comparison of calculated wall shear values for turbulent flow on a flat plate.

Table III and Figure 4 show the results for a turbulent flow on a flat plate with unit
Reynolds number corresponding to 10°. The calculations with the iterative method started
as laminar at x =0 and transition location was specified at x =0.2 and were continued with
k=0.11n [0, 1] and k=1 in [1,10]. The calculations with the non-iterative method started at
the fourth x-station, x =0.40. As can be seen, the predictions of the noniterative method are
in very good agreement with those obtained with the iterative method. The efficiency of the
noniterative method is similar to the efficiency in laminar flows: whereas the iterative method
requires 41 iterations, the noniterative method requires only 16.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1139-1148



1148 T. CEBECI AND J. P. SHAO

Table IV. Comparison of calculated results for turbulent flow on a flat plate.

Iterative method Noniterative method (S iter = (S Jnon Relative
x (S iter Iter (4 Ynon Iter Diff. Diff.
0.4 1.24E+400 1 1.24E+00 1 4.00E — 03 322E — 03
0.5 1.32E+4-00 2 1.33E4-00 1 —7.00E — 03 —5.29E — 03
0.6 1.40E+00 2 1.40E+00 1 —1.00E — 03 —7.15E — 04
0.7 1.47E4-00 2 1.48E+00 1 —2.00E — 03 —1.36E — 03
0.8 1.53E+400 2 1.55E+00 1 —1.30E — 02 —8.47E — 03
0.9 1.60E+-00 1 1.60E+00 1 0.00E + 00 0.00E + 00
1 1.66E+00 2 1.66E+00 1 2.00E — 03 —1.20E — 03
2.5 2.17E+00 2 2.17E400 1 —2.00E — 03 —9.21E — 04
5 2.90E+00 1 2.87E+00 1 2.20E — 02 7.60E — 03
7.5 3.33E4-00 2 3.34E4-00 1 —1.30E — 02 —3.91E — 03
10 3.70E+00 2 3.83E+00 1 —1.29E — 01 —3.48E — 02
Total iterations 19 11

450
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wS

2.00 1 —#— Noniterative Method|
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X

Figure 5. Comparison of calculated wall shear values for turbulent flow on a flat plate.

Table IV and Figure 5 present the results similar to those in Table III and Figure 4 except
k in [1,10] is 2.5. As can be seen, the predictions of the noniterative method differ from those
predicted with the iterative method. The reason for this is clearly the way b is calculated.
Other choices for handling the b-term are in progress and will be reported later.
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